2019 年下半年 CV 类论文阅读情况

Classification

  • InceptionV1-V4, Inception-ResNet(10.8), Xception(12.5)
  • ResNet(9.2), DenseNet(12.4)
  • SqueezeNet(12.5)
  • MoblieNetv1(12.5), MobileNetv2(12.11), MobileNetv3
  • EfficientNet(12.13)
  • ReNeXt(12.6)
  • ShuffleNetv1(12.5), ShuffleNetv2(12.11)
  • NasNet, MnasNet
  • DPN
  • MixNet:谷歌新出最强轻量级模型
  • SEnet(12.12)

Object Detection

  • R-CNN(10.10), Fast R-CNN(10.24), Faster R-CNN(10.25), Mask R-CNN
  • SPPnet(10.23)
  • YOLOv1(11.28), YOLO9000(12.3), YOLOv3
  • FreeAnchor
  • CornetNet
  • CenterNet
  • SSD(12.4)
  • EdgeNet:速度最快
  • EfficientDet:性能最强
  • ASFF
  • FPN
  • MnasFPN:最强轻量级模型
  • RetinaNet
  • TridentNet

Semantic Segmentation

  • PolarMask
  • FCN(11.15), R-FCN
  • U-Net(11.18), U-Net++, mU-Net
  • ICNet
  • SegNet(12.4)
  • PSPNet
  • LinkNet
  • DeepLabv1, DeepLabv2, DeepLabv3, DeepLabv3+(12.15)

其它

Face Recognition: From Traditional to Deep Learning Methods:人脸识别综述

A Survey of Deep Learning Techniques for Autonomous Driving:自动驾驶综述

USE OF A CAPSULE NETWORK TO DETECT FAKE IMAGES AND VIDEOS:伪造图片和视频识别

Style Mixer: Semantic-aware Multi-Style Transfer Network:风格迁移新网络

Momentum Contrast for Unsupervised Visual Representation Learning:恺明大佬的无监督语义分割

On the Relationship between Self-Attention and Convolutional Layers:自注意力机制与卷积层之间的关系

Multi-Label Learning with Deep Forest:深度森林多标签学习

Faster AutoAugment: Learning Augmentation Strategies using Backpropagation:faster自动增强(前面还有谷歌的fastaa、aa、randaa)

Research Guide: Model Distillation Techniques for Deep Learning:知识蒸馏技术研究指南

Object Detection in 20 Years: A Survey:目标检测综述

语义分割综述盘点

Deep Learning for Visual Tracking: A Comprehensive Survey:目标跟踪综述

Ultrafast Photorealistic Style Transfer via Neural Architecture Search:NAS风格迁移

Advances and Open Problems in Federated Learning:联邦学习综述

Analyzing and Improving the Image Quality of StyleGAN:最强大的风格迁移StyleGAN2

在计算机视觉深度学习方向,这几个月对基本分类网络、轻量级网络、目标检测、语义分割几个方向进行了了解,快要期末考了,剩下的交给2020年了(╯#-_-)╯。预计下学期重点会放在人脸识别、实例分割、GAN、NAS 上。

-------------本文结束感谢您的阅读-------------