Classification
InceptionV1-V4, Inception-ResNet(10.8),Xception(12.5)ResNet(9.2),DenseNet(12.4)SqueezeNet(12.5)MoblieNetv1(12.5),MobileNetv2(12.11), MobileNetv3EfficientNet(12.13)ReNeXt(12.6)ShuffleNetv1(12.5),ShuffleNetv2(12.11)- NasNet, MnasNet
- DPN
- MixNet:谷歌新出最强轻量级模型
SEnet(12.12)
Object Detection
R-CNN(10.10),Fast R-CNN(10.24),Faster R-CNN(10.25), Mask R-CNNSPPnet(10.23)YOLOv1(11.28),YOLO9000(12.3), YOLOv3- FreeAnchor
- CornetNet
- CenterNet
SSD(12.4)- EdgeNet:速度最快
- EfficientDet:性能最强
- ASFF
- FPN
- MnasFPN:最强轻量级模型
- RetinaNet
- TridentNet
Semantic Segmentation
- PolarMask
FCN(11.15), R-FCNU-Net(11.18), U-Net++, mU-Net- ICNet
SegNet(12.4)- PSPNet
- LinkNet
DeepLabv1, DeepLabv2, DeepLabv3, DeepLabv3+(12.15)
其它
Face Recognition: From Traditional to Deep Learning Methods:人脸识别综述
A Survey of Deep Learning Techniques for Autonomous Driving:自动驾驶综述
USE OF A CAPSULE NETWORK TO DETECT FAKE IMAGES AND VIDEOS:伪造图片和视频识别
Style Mixer: Semantic-aware Multi-Style Transfer Network:风格迁移新网络
Momentum Contrast for Unsupervised Visual Representation Learning:恺明大佬的无监督语义分割
On the Relationship between Self-Attention and Convolutional Layers:自注意力机制与卷积层之间的关系
Multi-Label Learning with Deep Forest:深度森林多标签学习
Faster AutoAugment: Learning Augmentation Strategies using Backpropagation:faster自动增强(前面还有谷歌的fastaa、aa、randaa)
Research Guide: Model Distillation Techniques for Deep Learning:知识蒸馏技术研究指南
Object Detection in 20 Years: A Survey:目标检测综述
Deep Learning for Visual Tracking: A Comprehensive Survey:目标跟踪综述
Ultrafast Photorealistic Style Transfer via Neural Architecture Search:NAS风格迁移
Advances and Open Problems in Federated Learning:联邦学习综述
Analyzing and Improving the Image Quality of StyleGAN:最强大的风格迁移StyleGAN2
在计算机视觉深度学习方向,这几个月对基本分类网络、轻量级网络、目标检测、语义分割几个方向进行了了解,快要期末考了,剩下的交给2020年了(╯#-_-)╯。预计下学期重点会放在人脸识别、实例分割、GAN、NAS 上。